Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Indian J Exp Biol ; 2007 Dec; 45(12): 1022-30
Article in English | IMSEAR | ID: sea-58552

ABSTRACT

Metabolic engineering was used to disrupt glutamine metabolism in microspores in order to block pollen development. We used a dominant-negative mutant (DNM) approach of cytosolic glutamine synthetase (GS1) gene under the microspore-specific promoter NTM19 to block glutamine synthesis in developing pollen grains. We observed partial male sterility in primary transgenic plants by using light microscopy, FDA, DAPI and in vitro pollen germination test. Microspores started to die in the early unicellular microspore stage, pollen viability in all primary transgenic lines ranged from 40-50%. All primary transgenics produced seeds like control plants, hence the inserted gene did not affect the sporophyte and was inherited through the female germline. We regenerated plants by in vitro microspore embryogenesis from 4 individual lines, pollen viability of progeny ranged from 12 to 20%, but some of them also showed 100% male sterility. After foliage spray with glutamine, 100% male-sterile plants were produced viable pollen and seed set was also observed. These results suggested that mutated GS1 activity on microspores had a significant effect on normal pollen development. Back-cross progenies (T2) of DH 100% male-sterile plants showed normal seed set like primary transgenics and control plants.


Subject(s)
Amino Acids/pharmacology , Genes, Dominant , Glutamate-Ammonia Ligase/genetics , Glutamine/pharmacology , Mutation , Plant Infertility/genetics , Plants, Genetically Modified/genetics , Pollen/genetics , Promoter Regions, Genetic/genetics , Nicotiana/genetics
2.
Indian J Exp Biol ; 2001 Dec; 39(12): 1322-4
Article in English | IMSEAR | ID: sea-59770

ABSTRACT

Shoot tip and nodal segment explants of Holarrhena antidysenterica when cultured on MS medium containing BAP (1.0-3.0 mg/l) with NAA (0.2-1.0 mg/l) and BAP (1.0-3.0 mg/l) with Kn. (0.2-1.0 mg/l) produced multiple shoots. Maximum multiple shoots was found in MS medium supplemented with BAP (2.0 mg/l) and NAA (0.5 mg/l). Subculture on the same medium resulted in rapid shoot multiplication at an average rate of 16 new shoots per subculture. Addition of urea (100 mg/l) in the medium increased the number of shoots up to 22 per culture. For best rooting, the shoots were excised from the culture flask and implanted individually on half strength MS medium with 0.5 mg/l each of IBA, IAA and NAA. After 20 days of transfer on root induction medium 95% rooting was achieved. Regenerated plantlets were successfully acclimatized and established in soil. About 90% of plantlets survived under open field conditions.


Subject(s)
Apocynaceae/physiology , Culture Media , Plant Shoots/growth & development , Regeneration
SELECTION OF CITATIONS
SEARCH DETAIL